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Abstract: Environmental monitoring is of great importance, and the Internet of Things (IoT) as a 
core supporting technology is also indispensable; among its key attributes, IoT communication energy 
consumption plays a critical role in ensuring stable system operation, while the capability of IoT to 
support both long-distance and short-distance monitoring is essential for achieving comprehensive 
and efficient environmental monitoring. Targeting the communication energy efficiency issues in the 
Internet of Things (IoT) for environmental monitoring, this paper systematically analyzes the energy 
consumption characteristics of short-range and long-range communication technologies, as well as 
their typical energy efficiency optimization mechanisms. It summarizes the strategies of different 
technologies for reducing wireless activation duration, transmission power, and data reporting 
frequency, and further discusses the limitations of existing research and future development directions. 
This paper can provide a reference for the design and deployment of high-energy-efficiency IoT 
systems for environmental monitoring. 

1. Introduction 
Environmental monitoring, as an important support for environmental safety and pollution control, 

has experienced significant development over the past 15 years. Internet of Things (IoT) technology 
has shown potential in the field of environmental monitoring, particularly in addressing the data 
latency issues of traditional monitoring systems while achieving significant results in reducing energy 
consumption and economic costs. IoT devices, through the deployment of numerous low-cost sensors, 
have made data capture easier and more economical. Combined with visualization capabilities, 
environmental data has become more intuitive and understandable [1-3]. The efficient data collection 
capabilities of IoT are particularly well-suited for environmental monitoring needs, enabling large-
scale, high-density real-time monitoring [4]. 

Considering the energy constraints and maintenance cost pressures faced by IoT nodes in long-
term deployment, energy efficiency has become a key bottleneck limiting system reliability and 
lifespan. Since IoT devices have limited energy storage, protecting them from security threats 
consumes additional energy, thereby depleting batteries and shortening network lifespan. Research 
on security solutions that strike a good balance between ensuring adequate security levels and 
reducing energy consumption remains scarce [5]. Therefore, developing efficient energy consumption 
data transmission schemes is crucial for enhancing IoT systems' capabilities in terms of throughput, 
energy efficiency, and self-management, which directly relates to extending the overall lifespan of 
IoT networks and the accuracy of environmental monitoring [6-8]. As shown in Fig.1, it represents a 
typical application scenario of the Internet of Things (IoT) for environmental monitoring, where 
multiple communication technologies cooperate to accomplish data collection and transmission. 
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Fig. 1 Schematic Diagram of Iot Application for Environmental Monitoring Supported by Multiple 

Communication Modes 
The main contributions of this article are summarized as follows: focusing on the communication 

energy efficiency of environmental monitoring IoT, it systematically analyzes the energy 
consumption sources of major communication technologies and their typical energy-saving methods. 
The rest of this paper is organized as follows. Section 2 presents the Background of the components 
of today’s energy consumption and the various kinds of them. Section 3 presents the energy-efficient 
mechanisms of short-range communication. Section 4 presents the energy-efficient mechanisms of 
long-range communication. Section 5 presents the current limitations in IoT energy efficiency 
research and opportunities to the future. Section 6 presents the conclusion of the paper.  

2. Background 
2.1 The components of IoT energy consumption  

The typical structure of IoT environmental monitoring nodes usually consists of four core 
components, as shown in Table 1: 

Table 1: The components of the main structure of IoT nodes 
Name Function 

Sensing layer responsible for data collection, perceiving physical parameters in the environment 
through various sensors 

Processing layer perform local computation and analysis on the collected data 
Communication layer handle data transmission and interaction 
Power Management ensure the energy supply and optimized usage of the entire system 

IoT accomplishes information interaction and data transmission between devices relying on 
wireless communication technologies. 

The energy consumption of IoT nodes is mainly composed of the following core components: 
Communication energy consumption is the primary component of IoT node energy consumption, 

typically accounting for 50-70% [9] of total energy consumption. Computational and sensing energy 
consumption includes MCU processing operations, sensor data collection, and signal conversion 
activities. 

One of the main issues related to IoT is the need to develop an efficient energy-saving 
communication protocol. For energy-constrained nodes and edge nodes [10], minimizing energy 
consumption is a necessary condition for extending device service life and reducing operational costs. 

2.2 Different kinds of communication technologies 
The diversity of IoT environmental monitoring application scenarios determines the differences in 

communication technology requirements. Forest fire monitoring scenarios require coverage of vast 
forest areas, with communication distances reaching several kilometers or even tens of kilometers, 
and nodes are sparsely deployed with difficult maintenance. Therefore, the data rate requirements are 
relatively low, but the requirements for communication reliability and coverage are high [11]. River 
water quality monitoring scenarios typically deploy sensors linearly along river channels, requiring 
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medium-distance communication capabilities [12-13]. These scenario differences directly lead to 
significant differences in communication overhead which indicates that there is no "one-size-fits-all" 
communication technology that can meet all scenario requirements. 

Therefore, it is necessary to systematically compare the energy consumption performance of short-
range communication technologies (such as ZigBee, BLE, Wi-Fi) with wide-area communication 
technologies (such as LoRa, NB-IoT, etc.). Understanding the classification of IoT applications and 
protocols using remote and short-range wireless technologies, which can perform wireless 
communication within different regional ranges [14], promotes the flexible deployment and expansion 
of IoT starting from the smallest area. Through comprehensive evaluation of different communication 
technologies in terms of energy consumption, coverage, rate, cost, etc., the optimal communication 
scheme can be selected for specific application scenarios, achieving a balance between system 
performance and energy efficiency. As shown in Fig. 2, different IoT communication technologies 
exhibit significant differences in terms of communication range and energy consumption 
characteristics. 

 
Fig. 2 Comparison of Range and Energy Consumption of Typical IoT Communication Technologies 

Targeting the technologies above, this paper analyzes the mechanism of their energy efficiency 
optimization. 

3. Energy Efficiency Optimization in Short-Range Communication 
Short-range communication is mainly appropriate for aspects like local range, high-density nodes, 

and environmental monitoring tasks with frequent interactions, which is widely used in scenarios like 
the Wi-Fi-based environmental monitoring nodes that aim for more accurate data measurement [15], 
Greenhouse Agriculture Monitoring [16], and Building Energy Consumption Monitoring [17].As an 
important element of IoT, short-range communication shows its attacks in Low power consumption, 
cost effectiveness, facilitates rapid network establishment and is well-suited for high-density 
deployment [18]. This paper conducts a comparative analysis of the following mainstream short-range 
communication technologies for IoT applications: ZigBee, Wi-Fi, and Bluetooth. 

3.1 Energy Efficiency Optimization in ZigBee 
ZigBee stands as one of the most extensively adopted transceiver standards for wireless sensor 

networks [19]. For ZigBee networks, energy efficiency optimization primarily relies on three strategies: 
shortening the active time of wireless transceiver blocks, minimizing data transmission times, and 
prolonging the node sleep period, which contributes to a substantial reduction in node power 
consumption [20]. 

Onwunali et al. [21] analyzed the energy consumption model of ZigBee IEEE 802.15.4 nodes, 
divided the node states into four categories, namely transmit, receive, measure and sleep, and 
explicitly discussed the impact of duty cycle on total energy consumption and node lifetime. Based 
on the research conducted by Liu, Zhibin et al. [22], the energy consumption of ZigBee is mainly 
concentrated in the transmission phase of wireless transceivers, and its power consumption varies 
significantly with transmission distance, transmission frequency, and network stability. Experiments 
have demonstrated that the energy consumption of ZigBee is primarily determined by the activation 
duration of wireless modules and the number of retransmissions; thus, reducing the activation 
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duration of transceivers and decreasing the number of retransmissions are the key directions for 
ZigBee energy-saving optimization. 

3.2 Energy Efficiency Optimization for Bluetooth  
Bluetooth is a wireless communication standard characterized by short-range transmission, low 

power consumption, and cost-effectiveness, which operates on radio frequency technology [23]. The 
energy consumption of BLE devices is mainly determined by broadcast events, connection events, 
and the active time of wireless transceivers; thus, energy efficiency optimization is generally carried 
out by reducing radio on-time, decreasing event trigger frequency, and improving low-power 
scheduling mechanisms [24-25]. 

Cortesi et al. [26] conducted a comparative study on the power consumption and latency of 
Bluetooth Mesh 5.0 and Wirepas Mesh on an experimental platform with 10 nodes. The experimental 
results showed that optimizing broadcast intervals, reducing event density, and decreasing idle 
listening time can significantly lower the average power consumption of BLE, which verifies that 
reducing the active duration of transceivers is the core direction for energy conservation. Tosi J, et al. 
[27] confirm that optimizing broadcast intervals, shortening idle listening time, and limiting network 
nodes (≤10) reduce BLE power consumption, which verifies that cutting unnecessary signal 
transmission frequency is the core energy-saving direction.  

3.3 Energy Efficiency Optimization in Wi-Fi 
Commercially referred to as Wi-Fi, IEEE 802.11 is a well-recognized standard for Wireless Local 

Area Networks (WLANs) [28]. The power consumption of Wi-Fi is mainly determined by continuous 
channel monitoring, high transmission power during data sending and receiving, and idle retention 
time required for maintaining connections. Therefore, energy efficiency optimization mainly focuses 
on reducing continuous monitoring time, adopting energy-saving modes to shorten wireless active 
duration, and utilizing low-power PHY/MAC features to cut down transmission costs [29]. 

Lim W S et al. [30] proposed a system called Power-Optimized Energy-efficient Mobility (POEM) 
and conducted extensive evaluations on an Android/Linux-based test platform. Experimental results 
show that POEM enables the Wi-Fi interface of mobile access points to enter sleep mode even during 
data transmission by leveraging the bandwidth asymmetry between Wi-Fi and WWAN interfaces and 
buffering packets received by the WWAN interface, which verifies that putting the Wi-Fi interface of 
mobile APs into sleep for a large proportion of time is an effective way to reduce Wi-Fi power 
consumption without significantly affecting system throughput or end-to-end latency. Zhang T et.al 
[31] introduced and evaluated a system-level power management approach for mobile handheld 
devices equipped with Wi-Fi (IEEE 802.11) interfaces. Experimental results show that this method 
can significantly extend the standby time of devices with Wi-Fi interfaces without modifying the Wi-
Fi, upper-layer protocols and their implementations, verifying that system-level power management 
is an effective direction to reduce Wi-Fi power consumption for energy-constrained handheld devices. 

4. Energy Efficiency Optimization in Long-Range Communication  
In special scenarios which need large-scale, distributed environmental monitoring equipment, 

although short-range communication technologies have remarkable performance in energy efficiency, 
they have obvious limitations in terms of coverage range, network scale, and terrain adaptability. To 
achieve long-term cross-regional and cross-terrain monitoring, it is necessary to adopt wide-area 
communication technologies that feature strong coverage capability, long communication distance, 
and support for massive nodes. Currently, these technologies are mainly separated into three 
categories, as shown in Table 2: 
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Table 2: The Category of long-range communication 
Name Advantage Sub-technology 

Cellular IoT 
(CIoT) 

low-cost, low-power, and scalable communication 
network [32] 

NB-IoT, LTE-M,5G/6G 

LPWAN energy efficiency, high coverage, and cost efficiency [33] LoRa, Sigfox 
NTN Energy efficiency, Data Analytics, Privacy and Security 

[34] 
LEO, HAPS 

4.1 Energy Efficiency Optimization for Cellular IoT 
Cellular IoT (e.g., NB-IoT and 6G), as a technology oriented toward large-scale IoT connections 

within the cellular system, has its own energy consumption, which is affected by wireless 
transmission power, downlink monitoring cycles during connection establishment, and 
retransmission mechanisms. Therefore, its energy-saving optimization generally revolves around 
reducing connection establishment frequency, lowering transmission power, and decreasing data 
reporting frequency [35]. 

4.1.1 Energy Efficiency Optimization in 6G 
6G, which serves as an efficient solution for overcoming security barriers in emerging application 

scenarios. Compared with previous wireless communication technologies, 6G has achieved 
remarkable improvements in energy consumption reduction and communication range extension [36-

37]. 
Fowdur et al. [38] adopted machine learning-driven methods such as base station deployment 

optimization, adaptive operation mode switching, and intelligent beamforming to reduce the energy 
consumption of base stations and access networks, thereby improving the overall energy efficiency 
of 6G networks. 

Hu, Ning, et al. [39] proposed an energy-efficient in-network computing paradigm for 6G that 
integrates network functions into general-purpose computing platforms to address the demand for 
energy-efficient computing in 6G networks. 

4.1.2 Energy Efficiency Optimization for NB-IoT 
Narrowband Internet of Things (NB-IoT) is a low-power wide-area network (LPWAN) technology 

based on a cellular network architecture. It is directly deployed on Global System for Mobile 
Communications (GSM), General Packet Radio Service (GPRS) or Long-Term Evolution (LTE) 
networks, and realizes low-cost, wide-coverage and low-power consumption connectivity for massive 
IoT terminals through narrowband radio frequency technology [40]. 

Nguyen et al. [41] designed an energy-efficient scheduling system by adopting an optimized Gated 
Recurrent Unit (GRU) model and the Narrowband Internet-of-Things (NB-IoT) protocol: the 
optimized GRU model generates tailored lighting dimming scenarios for each street based on 
environmental conditions and pedestrian traffic, and the NB-IoT protocol— a cellular-based 
technology that leverages existing LTE infrastructure—enables remote control of street light 
brightness. 

4.2 Energy Efficiency Optimization for unlicensed LPWAN 
Low-Power Wide-Area Network (LPWAN) technologies, represented by typical solutions such as 

LoRa and Sigfox, deliver ultra-low power consumption during long-distance communication by 
virtue of three core technical features: low-rate modulation, ultra-narrowband transmission, and 
extended data reporting cycles. Given that their energy consumption is predominantly governed by 
three key parameters—transmission duration, spreading factor, and reporting frequency—energy-
saving optimization strategies for LPWANs typically revolve around four dimensions: rate adaptation, 
transmission power regulation, reduction of data reporting frequency, and data compression plus 
aggregation. 
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4.2.1 Energy Efficiency Optimization in LoRa 
LoRa (Long Range) is a proprietary physical-layer communication technology for Low-Power 

Wide-Area Networks (LPWANs), which is based on spread spectrum modulation. By adopting Chirp 
Spread Spectrum (CSS) modulation, it enables long-distance data transmission of several kilometers 
without the need for relays, while featuring ultra-low power consumption to meet the requirements 
of low-rate and long-endurance communication for massive terminal devices in Internet of Things 
(IoT) scenarios [42]. 

Tu et al. [43] derived a closed framework for system-level energy efficiency modeling, analysis, 
and optimization in LoRa networks by leveraging stochastic geometry tools. This framework 
correlates the energy efficiency (EE) of LoRa with end device (ED) density and ED transmission 
power, revealing the variation trends of the EE curve with these two parameters and verifying the 
existence of an optimal transmission power that maximizes EE. 

Lin z et al. [44] proposed a system EE analysis model that fully considers the impacts of multi-
gateway, duty cycle, quasi-orthogonal spreading factor (SF), and capture effect; based on this model, 
the team studied the joint allocation optimization problem of channel (CH), spreading factor (SF) and 
transmission power (TP) to optimize system EE for uplink transmission, given the NP-hard 
complexity of this optimization problem. 

4.2.2 Energy Efficiency Optimization in Sigfox 
Sigfox adopts a connectionless broadcast mode with ultra-low power consumption and long 

transmission range, which performs optimally in IoT scenarios with small data transmission without 
retransmissions or acknowledgments [45]. 

Trendov S et al. [46] conducted a study on three LPWAN technologies (Sigfox, Narrowband Internet 
of Things (NB-IoT), and Long-Term Evolution for Machines (LTE-M)) using transceiver modules in 
a controlled environment as the experimental setup. This study establishs a multi-dimensional power 
consumption evaluation system for LPWAN technologies. 

4.3 Energy Efficiency Optimization in NTN 
As an important supplementary means for large-scale environmental monitoring in the future, 

Non-Terrestrial Networks (NTN)—including Low-Earth Orbit (LEO) satellites and High-Altitude 
Platform Stations (HAPS)—enable cross-regional monitoring via ultra-large coverage and space-air-
ground integrated connectivity. However, the energy consumption of their terminal devices is 
significantly affected by three key factors: link loss over long-distance transmission, transmission 
power requirements, and access waiting cycles. Therefore, energy-saving optimization strategies 
mainly focus on four aspects: reducing link budget, designing lightweight access mechanisms, 
minimizing terminal transmission activities, and adopting reflection/relay communication 
technologies to cut down transmission power. 

4.3.1 Energy Efficiency Optimization for LEO 
LEO (Low Earth Orbit) satellites are artificial satellites operating in orbits 160–2000 kilometers 

above the Earth's surface, providing seamless large-scale coverage and high-quality signal access, 
while also facing technical challenges such as high mobility and limited payload budgets [47]. 

Xiao z et al. [48] proposed an energy-efficient resource allocation framework for AmBC-enabled 
NOMA IoV networks under imperfect Successive Interference Cancellation (SIC) decoding. 

4.3.2 Energy Efficiency Optimization for HAPS 
High-Altitude Platform Stations (HAPS) are aerial network nodes deployed in the stratosphere at 

an altitude of approximately 20 kilometers, which can serve as airborne communication base stations 
to provide communication services [49] .  

 Alqasir et al. [50] proposed an artificial neural network (ANN)-based method for energy-efficient 
(EE) operation of small base stations (SBSs) which demonstrates that the effectiveness of this method 
is close to that of the optimal scheme, the average mean squared error (MSE) of the proposed 
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algorithm is only 1%, and it can achieve 10-step mobility prediction for UEs. 

4.4 Energy Efficiency Optimization for Conclusion 
This section compares the energy consumption characteristics and energy-saving strategies of 

three types of long-range communication technologies, namely Cellular IoT, LPWAN, and NTN. 
Although their energy consumption sources vary, energy conservation for all three technologies 
centers on three core approaches: reducing wireless active duration, lowering transmission power, 
and decreasing the frequency of data reporting. Cellular IoT is suitable for deep coverage scenarios, 
LPWAN is tailored for low-rate and long-distance monitoring applications, and NTN is applicable to 
remote and cross-regional scenarios. Their complementary nature lays a solid foundation for the 
subsequent construction of a multi-layer collaborative environmental monitoring network. 

5. Limitzations 
Based on the research represented in the first four chapters, we already know model of the 

consumption of IoT environmental monitoring, short-range and wide-area communication 
technologies, as well as their corresponding energy-saving mechanisms. However, research 
nowadays still has certain limitations, which restrict the energy efficiency performance of the system 
in practical deployment. Therefore, this chapter will summarize the limitations of current research 
and propose potential future research directions. 

5.1 Current Limitations in IoT Energy Efficiency Research 
5.1.1 Protocol-Level limitations  

Existing IoT communication protocols are typically designed independently at the protocol layer, 
which leads to a lack of a collaborative optimization mechanism with the sensing, processing, and 
network layers. This makes it difficult for the system to achieve energy efficiency joint scheduling 
based on global states. Most energy-saving strategies rely on fixed parameter configurations (e.g., 
fixed duty cycles, fixed listening periods) and cannot dynamically adjust based on network load, 
environmental changes, or link quality, thus limiting the upper bound of energy efficiency 
optimization. Existing studies generally evaluate communication energy consumption under idealized 
or simplified channel conditions, without fully considering real-world factors such as interference, 
blockage, and dynamic terrain. This leads to discrepancies between theoretical results and energy 
consumption performance in practical deployments. 

5.1.2 System-Level limitations  
In high-density, heterogeneous environmental monitoring networks, multiple communication 

technologies (e.g., Wi-Fi, ZigBee, LoRa, NB-IoT) are commonly deployed in parallel. However, the 
lack of a unified cross-technology energy efficiency collaboration mechanism prevents the system 
from achieving overall optimization capabilities. Current energy efficiency optimization methods are 
mostly limited to a single-node or single-link perspective, lacking a global scheduling strategy for the 
entire network. As a result, they cannot dynamically coordinate resources and energy consumption 
based on network states. Although edge computing and in-network processing can reduce data 
volume, their integration with communication protocols and network scheduling layers remains 
insufficient, making it difficult to achieve energy efficiency balance between computing and 
communication. 

5.1.3 Application-Level limitations 
Environmental monitoring typically involves complex scenarios with multiple terrains, densities, 

and constraints. However, most existing studies validate their methods under idealized or single 
scenarios, resulting in insufficient applicability of these methods in real-world deployments. Most 
energy-saving algorithms do not fully consider practical application factors such as device lifecycle, 
maintenance costs, and long-term reliability, making energy-saving strategies unable to meet the 
monitoring requirements of long-term operation. Energy efficiency research and empirical data for 
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extreme environments (e.g., remote mountains, oceans, deserts) are still lacking, leading to a 
significant gap between theoretical models and actual system performance. 

5.2 Future Opportunities 
5.2.1 AI-driven Energy Optimization  

Artificial intelligence provides dynamic, adaptive decision-making capabilities for communication 
energy efficiency optimization, enabling automatic adjustment of transmission parameters based on 
link states, node loads, and environmental changes. Machine learning models can support multi-
dimensional optimization such as power control, data sampling, and sleep scheduling, enabling the 
evolution of traditional fixed strategies toward intelligent scheduling. Typical directions include deep 
reinforcement learning (DRL)-based rate adaptation and machine learning (ML)-based sleep 
scheduling optimization. 

5.2.2 Cross-layer Co-design 
Cross-layer joint optimization can simultaneously consider the energy consumption contributions 

of sensing, processing, and communication, achieving overall rather than local energy efficiency 
improvements. By coordinating parameters such as sampling rates, data compression, and reporting 
periods, transmission loads can be effectively reduced, and end-to-end energy consumption can be 
lowered. Compared with traditional layered independent optimization methods, cross-layer design is 
more suitable for the multi-constraint, multi-objective comprehensive energy efficiency requirements 
in large-scale environmental monitoring. 

5.2.3 Hybrid Multi-technology Networks  
Future environmental monitoring systems will rely on the collaborative operation of multiple 

communication technologies (e.g., ZigBee, BLE, Wi-Fi, LoRa, NB-IoT, and NTN) to cover different 
distance and energy efficiency requirements. Through mechanisms such as cross-technology link 
selection, interface switching, and multi-hop collaboration, the overall network energy efficiency and 
reliability can be significantly improved. A layered fusion architecture allows terminals to select the 
most energy-efficient communication method in different scenarios, enabling flexible energy 
management. 

Current IoT energy efficiency research still has shortcomings in terms of protocol adaptability, 
system synergy, and practical deployment validation. Future opportunities focus on: AI-driven 
intelligent energy saving, cross-layer collaboration, multi-communication technology integration, 
energy harvesting, and edge intelligence. These directions will promote more efficient and sustainable 
large-scale environmental monitoring systems. 

6. Conclusion 
This review systematically analyzes the energy consumption composition in IoT environmental 

monitoring and the energy efficiency characteristics of major communication technologies. It 
primarily compares the energy-saving mechanisms and applicable scenarios of various technologies, 
including short-range communication, LPWAN, cellular IoT, and NTN. Although these technologies 
differ significantly in link structure and protocol design, their energy-saving strategies all follow the 
common principles of reducing wireless activation duration, lowering transmission power, and 
decreasing reporting frequency. This review identifies limitations in areas such as communication 
protocols, system synergy, and practical deployment, and proposes future research directions 
including AI-driven approaches, adaptive cross-layer design, multi-technology integration, and 
energy harvesting. With the development of 6G, NTN, and edge intelligence, IoT systems for 
environmental monitoring are expected to achieve collaborative optimization with broader coverage, 
longer lifespans, and higher energy efficiency. 

 

280



References 
[1] Bhoi S K, Panda S K, Jena K K, et al. IoT-EMS: An internet of things based environment 
monitoring system in volunteer computing environment[J]. Intell. Autom. Soft Comput, 2022, 32(3): 
1493-1507. 
[2] Roostaei J, Wager Y Z, Shi W, et al. IoT-based edge computing (IoTEC) for improved 
environmental monitoring[J]. Sustainable computing: informatics and systems, 2023, 38: 100870. 
[3] Bates H, Pierce M, Benter A. Real-time environmental monitoring for aquaculture using a 
LoRaWAN-based IoT sensor network[J]. Sensors, 2021, 21(23): 7963. 
[4] Algabroun H, Håkansson L. Parametric machine learning-based adaptive sampling algorithm for 
efficient iot data collection in environmental monitoring[J]. Journal of Network and Systems 
Management, 2025, 33(1): 5 
[5] Tekin N, Acar A, Aris A, et al. Energy consumption of on-device machine learning models for 
IoT intrusion detection[J]. Internet of Things, 2023, 21: 100670. 
[6] Asiri M, Sheltami T, Al-Awami L, et al. A novel approach for efficient management of data 
lifespan of IoT devices[J]. IEEE Internet of Things Journal, 2019, 7(5): 4566-4574. 

[7] Mahmoud S Shuker, Mohamad A A H. A study of efficient power consumption wireless 
communication techniques/modules for Internet of Things (IoT) applications[J]. Advances in Internet 
of Things, 2016, 6(2): 19‑29. DOI: 10.4236/ait.2016.62002. 

[8] Zhang J. Real-time detection of energy consumption of IoT network nodes based on artificial 
intelligence[J]. Computer Communications, 2020, 153: 188-195 
[9] Aldin H N S, Ghods M R, Nayebipour F, et al. A comprehensive review of energy harvesting and 
routing strategies for IoT sensors sustainability and communication technology[J]. Sensors 
International, 2024, 5: 100258 
[10] Krishna A V, Leema A A. Etm-iot: Energy-aware threshold model for heterogeneous 
communication in the internet of things[J]. Computers Materials & Continua, 2022, 70(1): 1815-1827. 
[11] Kizilkaya B, Ever E, Yatbaz H Y, et al. An effective forest fire detection framework using 
heterogeneous wireless multimedia sensor networks[J]. ACM Transactions on Multimedia 
Computing, Communications, and Applications (TOMM), 2022, 18(2): 1-21. 
[12] Gozzi C. Environmental changes in river chemistry: A compositional approach for effective 
monitoring and management[J]. Science of the Total Environment, 2025, 972: 179074 
[13] Swain A, Abdellatif E, Mousa A, et al. Sensor technologies for transmission and distribution 
systems: A review of the latest developments[J]. Energies, 2022, 15(19): 7339. 
[14] Senthilkumar S P, Subramani B. Internet of Things in Low-Power Wide Area Network and Short 
Range Network: A Review[J]. i-Manager's Journal on Computer Science, 2023, 10(4): 33. 
[15] Zhang R, Yan B, Guo H F, et al. A new environmental monitoring system based on WiFi 
technology[J]. Procedia CIRP, 2019, 83: 394-397. 
[16] Dan L I U, Xin C, Chongwei H, et al. Intelligent agriculture greenhouse environment monitoring 
system based on IOT technology[C]//2015 International Conference on Intelligent Transportation, 
Big Data and Smart City. IEEE, 2015: 487-490. 
[17] Wei C, Li Y. Design of energy consumption monitoring and energy-saving management system 
of intelligent building based on the Internet of things[C]//2011 international conference on electronics, 
communications and control (ICECC). IEEE, 2011: 3650-3652. 
[18] Bahashwan A A, Anbar M, Abdullah N, et al. Review on common IoT communication 
technologies for both long-range network (LPWAN) and short-range network[M]//Advances on 

281



Smart and Soft Computing: Proceedings of ICACIn 2020. Singapore: Springer Singapore, 2020: 341-
353. 
[19] Ramya C M, Shanmugaraj M, Prabakaran R. Study on ZigBee technology[C]//2011 3rd 
international conference on electronics computer technology. IEEE, 2011, 6: 297-301. 
[20] Bansal A, Mishra V, Sharma P, et al. Enhancing Railway Safety Using Zigbee and IoT-Enabled 
Energy-Efficient Wireless Sensor Network Approach[C]//International Conference on Data Science 
and Big Data Analysis. Cham: Springer Nature Switzerland, 2025: 121-136. 
[21] Oluropo O E, Onwunali O O C. Evaluation of energy demand and lifespan of battery-powered 
ZigBee IEEE 802.15. 4 compliant sensor node for Internet of Things-based applications[J]. Journal 
of Multidisciplinary Engineering Science and Research (JMESR), 2022, 1(3). 
[22] Liu Z, Li Y, Zhao L, et al. Comparative evaluation of the performance of ZigBee and LoRa 
wireless networks in building environment[J]. Electronics, 2022, 11(21): 3560. 
[23] McDermott-Wells P. What is bluetooth?[J]. IEEE potentials, 2004, 23(5): 33-35. 
[24] Schrader R, Ax T, Röhrig C, et al. Advertising power consumption of bluetooth low energy 
systems[C]//2016 3rd International Symposium on Wireless Systems within the Conferences on 
Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). IEEE, 2016: 62-
68. 
[25] Bulić P, Kojek G, Biasizzo A. Data transmission efficiency in bluetooth low energy versions[J]. 
Sensors, 2019, 19(17): 3746. 
[26] Cortesi S, Vogt C, Reinschmidt E, et al. Latency and Power Consumption in 2.4 GHz IoT 
Wireless Mesh Nodes: An Experimental Evaluation of Bluetooth Mesh and Wirepas Mesh[C]//2023 
19th International Conference on Wireless and Mobile Computing, Networking and Communications 
(WiMob). IEEE, 2023: 200-205. 
[27] Tosi J, Taffoni F, Santacatterina M, et al. Performance evaluation of bluetooth low energy: A 
systematic review[J]. Sensors, 2017, 17(12): 2898. 
[28] Pahlavan K, Krishnamurthy P. Evolution and impact of Wi-Fi technology and applications: A 
historical perspective[J]. International Journal of Wireless Information Networks, 2021, 28(1): 3-19. 
[29] Malik A, Kushwah R. Energy-efficient scheduling in IoT using Wi-Fi and ZigBee cross-
technology[J]. Journal of Supercomputing, 2023, 79(10). 
[30] Lim W S, Shin K G. POEM: Minimizing energy consumption for WiFi tethering service[J]. 
IEEE/ACM Transactions on Networking, 2016, 24(6): 3785-3797. 

[31] Zhang T, Madhani S, Gurung P, et al. Reducing energy consumption on mobile devices with WiFi 
interfaces[C]// Proc. IEEE Global Telecommunications Conference (GLOBECOM’05). St. Louis, 
MO, USA: IEEE, 2005: 561–565. 

[32] Moges T H, Lakew D S, Nguyen N P, et al. Cellular Internet of Things: Use cases, technologies, 
and future work[J]. Internet of Things, 2023, 24: 100910. 
[33] Islam M, Jamil H M M, Pranto S A, et al. Future industrial applications: Exploring lpwan-driven 
iot protocols[J]. Sensors, 2024, 24(8): 2509. 
[34] Dagiuklas A, Zhu Y. The role of NTN in 6G[J]. https://futurenetworks. ieee. org, 2022. 
[35] Shah S W H, Mian A N, Aijaz A, et al. Energy-efficient mac for cellular IoT: state-of-the-art, 
challenges, and standardization[J]. IEEE Transactions on Green Communications and Networking, 
2021, 5(2): 587-599. 
[36] Mitev M, Chorti A, Poor H V, et al. What physical layer security can do for 6G security[J]. IEEE 
Open Journal of Vehicular Technology, 2023, 4: 375-388. 

282



[37] Jiang W, Han B, Habibi M A, et al. The road towards 6G: A comprehensive survey[J]. IEEE 
Open Journal of the Communications Society, 2021, 2: 334-366. 
[38] Fowdur T P, Doorgakant B. A review of machine learning techniques for enhanced energy 
efficient 5G and 6G communications[J]. Engineering Applications of Artificial Intelligence, 2023, 
122: 106032. 
[39] Hu N, Tian Z, Du X, et al. An energy-efficient in-network computing paradigm for 6G[J]. IEEE 
Transactions on Green Communications and Networking, 2021, 5(4): 1722-1733. 
[40] Qasim N H, Salman A J, Salman H M, et al. Evaluating NB-IoT within LTE networks for 
enhanced IoT connectivity[C]//2024 35th Conference of Open Innovations Association (FRUCT). 
IEEE, 2024: 552-559. 
[41] Nguyen T T, VO D T, Hoang X L, et al. Energy Efficient Scheduler Based on GRU Model for 
Smart Street Light Using NBIoT[C]//International Conference on Intelligence of Things. Cham: 
Springer Nature Switzerland, 2024: 119-130. 
[42] Sun Z, Yang H, Liu K, et al. Recent advances in LoRa: A comprehensive survey[J]. ACM 
Transactions on Sensor Networks, 2022, 18(4): 1-44. 
[43] Tu L T, Bradai A, Pousset Y, et al. Energy efficiency analysis of LoRa networks[J]. IEEE 
wireless communications letters, 2021, 10(9): 1881-1885. 
[44] Lin Z, Zhang X, Gong S, et al. Matching-driven deep reinforcement learning for energy-efficient 
transmission parameter allocation in multi-gateway LoRa networks[J]. IEEE Transactions on 
Vehicular Technology, 2024. 
[45] Levchenko P, Bankov D, Khorov E, et al. Performance comparison of nb-fi, sigfox, and 
lorawan[J]. Sensors, 2022, 22(24): 9633. 
[46] Trendov S, Sariiev E, Mukhtar K B S, et al. Comparison of performance and power consumption 
in sigfox, NB-Iot, and LTE-M[C]//International Conference on Applied Innovations in IT. Cham: 
Springer Nature Switzerland, 2024: 127-158. 
[47] Ge H, Li B, Jia S, et al. LEO enhanced global navigation satellite system (LeGNSS): Progress, 
opportunities, and challenges[J]. Geo-spatial Information Science, 2022, 25(1): 1-13. 
[48] Khan W U, Javed M A, Nguyen T N, et al. Energy-efficient resource allocation for 6G 
backscatter-enabled NOMA IoV networks[J]. IEEE Transactions on Intelligent Transportation 
Systems, 2021, 23(7): 9775-9785. 
[49] Kurt G K, Khoshkholgh M G, Alfattani S, et al. A vision and framework for the high altitude 
platform station (HAPS) networks of the future[J]. IEEE Communications Surveys & Tutorials, 2021, 
23(2): 729-779. 
[50] Alqasir A, Aldubaikhy K. Resource Management Through Energy Harvesting and Mobility 
Prediction: A Learning Approach[J]. Arabian Journal for Science and Engineering, 2025, 50(8): 
5541-5557. 
 

283




